
On Solids whose surface can be

unfolded onto a plane *

Leonhard Euler

§1 Very well-known is the property of the cylinder and the cone according
to which their surface can be unfolded onto a plane and this property is even
extended to all cylindrical and conic bodies whose bases have any arbitrary
shape; the sphere on the other hand, does not enjoy this property, since its
surface by no means can be unfolded onto a plane and it cannot be covered
by a plain surface; from this arises the question, as curious as noteworthy,
whether except cones and cylinders other classes of solids exist whose surface
can be onfolded onto the plane in the same way or not. Therefore, I decided
to consider the following problem in this dissertation:

To find a general equation for all solids whose surface can be expanded onto a plane,

whose solution I will tackle in various ways.

*Original title: “ De solidis quorum superficiem in planum explicare licet“, first published in
„Novi Commentarii academiae scientiarum Petropolitanae (1771), 1772, pp. 3-34“, reprinted in
„Opera Omnia: Series 1, Volume 28, pp. 161 - 186 “, Eneström-Number E419, translated by:
Alexander Aycock, for the „Euler-Kreis Mainz“
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FIRST SOLUTION DERIVED FROM MERE ANALYTICAL PRINCIPLES

§2 Let (Fig. 1) Z be an arbitrary point on the surface of the solid we are
looking for the location of which point in usual manner shall be expressed
by three mutually orthogonal coordinates AX = x, XY = y and YZ = z such
that an equation between these three coordinates is to be found by means of
which the problem is satisfied.

Fig. 1 
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Further, let us assume that the surface of a solid of such a kind is already
unfolded onto the plane and it is represented in figure 2 in which the point Z
falls on V whose location shall be defined by two orthogonal coordinates in
such a way that it is OT = t and TV = u, and it is manifest that the first three
coordinates x, y and z have to depend on these two t and u in a certain way,
and hence every single one of them can be considered a certain functions of t
and u.
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§3 In order to introduce this condition into the calculation in a more con-
venient way let us consider it in terms of differentials and, since x and y are
functions of the two variables t and u, let us define their differentials by means
of these formulas:

dx = ldt + λdu, dy = mdt + µdu and dz = ndt + νdu,

where, since the letters l, m, n and λ, µ, ν in the same way denote certain
functions of the two variables t and u, it is clear from the nature of functions
of such a kind that is has to be:(

dl
du

)
=

(
dλ

dt

)
,
(

dm
du

)
=

(
dµ

dt

)
and

(
dn
du

)
=

(
dν

dt

)
.

§4 Now, let us in the unfolded surface (Fig.2)

O T t

V v’

v

Fig. 2
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except the point V contemplate two other infinitely close ones v and v′ for the
latter of which the coordinates shall be

OT = t and Tv = u + du,

for the first on the other hand:

Ot = t + dt and tv′ = u,

such that the points V and v have the common abscissa OT = t, but the points
V and v′ have the common ordinate = u. Having drawn the infinitesimal short
lines Vv′ and vv′ the sides of the elementary triangles Vvv′ are determined in
such a way that it is:

Vv = du, Vv′ = dt and vv′ =
√

du2 + dt2,

and now it is easily understood that the same triangle has to be found also in
the surface of the solid we are looking for.

§5 Therefore, in the surface of the solid let z and z′ be the points correspon-
ding to the points v and v′ and let us see, how the three coordinates behave
for those points z and z′. But, the way how the point Z is defined by means of
these three coordinates, the first = x, the second = y, the third = z, which all
are functions of the two variables t and u, since for the point v the abscissa t
remains the same, but the ordinate u on the other hand is augmented by its
differential du, the three coordinates for the point z of the solid will behave as
this:

I. x + λdu, II. y + µdu and III. z + νdu;

in similar way, because for the point v′ the ordinate u remains the same, the
abscissa t on the other hand is augmented by its differential dt, the three
coordinates for the point z′ will be:

I. x + ldt, II. y + mdt and III. z + ndt.

§6 But it is known, if for any arbitrary point in the surface of a solid the
coordinates were x, y and z, but for another infinitely close point they were x′,
y′ and z′, that then the distance of the points will be:
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=
√
(x− x′)2 + (y− y′)2 + (z− z′)2;

hence, we will have for the single sides of the triangle Zzz′

1◦ Zz = du
√

λ2 + µ2 + ν2,

2◦ Zz′ = dt
√

l2 + m2 + n2

and
3◦ zz′ =

√
(λdu− ldt)2 + (µdu−mdt)2 + (νdu− ndt)2

or

zz′ =
√

dt2(ll + mm + nn) + du2(λλ + µµ + νν)− 2dtdu(lλ + mµ + nν).

§7 Now, because the surface of the solid has to totally agree with the plain
figure (Fig. 2), it is necessary that the triangles Zzz′ and Vvv′ are non only
equal but also similar and hence the sides homologuously equal, namely:

I◦. Zz = Vv, II◦. Zz′ = Vv′ and III◦. zz′ = vv′,

whence we obtain the following equations:

I◦. λ2 + µ2 + ν2 = 1

II◦. l2 + m2 + n2 = 1

III◦. dt2(l2 + m2 + n2) + du2(λ2 + µ2 + ν2)− 2dtdu(lλ + mµ + nν) = dt2 + du2,

the third because of the first two is reduced to this one:

lλ + mµ + nν = 0,

in which three equations the solution of our problem is contained, from which
it is understood that it can be reduced to the following analytical problem:

Having propounded the two variables t and u to find six functions l, m, n and λ, µ, ν

of them of such a nature that the following six conditions are satisfied:
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I◦.
(

dl
du

)
=

(
dλ

dt

)
, II◦.

(
dm
du

)
=

(
dµ

dt

)
, III◦,

(
dn
du

)
=

(
dν

dt

)
,

IV◦. ll + mm + nn = 1, V◦. λλ + µµ + νν = 1,

VI◦ lλ + mµ + nν = 0,

which problem considered for itself seems to be most difficult for a long time,
of which nevertheless a sufficiently beautiful solution will be able to exhibited
below.
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SECOND SOLUTION DERIVED FROM GEOMETRICAL PRINCIPLES

§8 In order to derive this solution from first principles let us consider eit-
her prismatical or pyramidal bodies which having excepted the bases are
understood to be covered by a chart, and on this chart rectilinear sharp bends
will be detected either parallel to each other or converging to a certain point,
the vertex of the pyramid, of course, which straight lines, whatsoever they
were, shall be denoted by the letters Aa, Bb, Cc, Dd etc. If therefore the chart
is unfolded onto the plane, in it the same straight lines Aa, Bb, Cc etc. will
occur, and they will be either parallel to each other or converge to a certain
point. Hence, vice versa, if on the plain chart such straight lines are drawn,
according to which the chart can be folded, it will be apt for covering a certain
either prismatic or pyramidal body.

§9 It will even be possible to draw the lines Aa, Bb, Cc, Dd etc., in the chart
ad libitum, such that they are neither parallel to each other nor converge to a
certain point, as long as they never cross each other, as figure 3 shows;

A

a

B

b

C
c

D

d

Fig. 3

for, no matter in which way this chart is folded according to these lines, it
will always possible to conceive a solid of such a kind, to which this folded
chart can be adapted. From this it is plain that except prismatic or pyramidal
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bodies also other classes of bodies are given which can be covered by a chart
this way, and whose surface can therefore be unfolded onto a plain.

§10 Therefore, in the surface of these bodies any number of straight lines
Aa, Bb, Cc, Dd etc. will be given which, even though they are neither parallel
nor converge to a certain point, will nevertheless be of such a nature that two,
very close to each other, such as Aa and Bb or Bb and Cc or Cc and Dd etc.,
if there are not parallel, at least intersect in a single point if the are drawn
further; for, if this would not happen, the space between two infinitely close
lines of such a kind in the surface of the bodies would not be intercepted
and therefore it would not be possible to unfold the surface onto the plane,
although in it are given arbitrary many straight lines Aa, Bb, Cc etc. From this
we conclude that it does not suffice for bodies satisfying our scope that it is
possible to draw an arbitrary number of lines Aa, Bb, Cc etc. on them, but
that its is furthermore required that two lines infinitely close to each other live
in the same plane and the space contained between them itself is plain.

§11 Now, let us continue the straight lines Aa, Bb, Cc etc. to infinity such
that our body obtains a everywhere curved surface, as our problem postulates
it because of the law of continuity. And now it is indeed immediately clear
that a surface of such a kind has to be of such a nature that from any arbitrary
point assumed in it at least one straight line can be drawn which completely
lies in the surface itself; but this condition alone does not exhaust the total
character of our problem, but additionally it is necessary that any two lines,
infinitely close to each other, of this kind live in the same plane, this means
that, if they are not parallel, they at least meet in one point, if continued.
Hence, if those single lines are elongated to the point of intersection in this
way, all these points of intersection will be found to lie on a certain curve,
because which is not totally living in one plane, will have two curvatures and
be of such a nature that its single elements, if they are elongated, exhibit those
lines Aa, Bb, Cc etc. mentioned above themselves in the surface of the body.

§12 Therefore, as any body convenient for our problem leads to a certain
curve with two curvatures, so vice versa having assumed a curve of this kind
ad libitum we will be able to determine a body from it which satisfies our
problem. But, at first project such a curve onto the plotting table plane, and
let (Fig. 4) its projection be aUu,
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Fig. 4
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for which we want to put the abscissa AT = t and the ordinate Tu = u such
that an equation between t and u is considered as given, and let UM be the
tangent of this curve at the point U, the line um on the other hand the tangent
at the infinitely close point u; having put all this let bVv be the curve with
the two curvatures itself, whose ordinate orthogonal to our plane shall be put
UV = v, and let v be an infinitely close point on the same curve, and from
both points V, v draw tangents of which the latter VS shall meet the line UM
in the point S, the other vs on the other hand shall intersect the line rm in the
point s. Here, we certainly could have drawn the infinitely close tangents in
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the points u and v, but, since it will be necessary in the following, it seemed
advisable to indicate them in the figure here.

§13 Because therefore the nature of the curve bVv is expressed by two
equations between the coordinates AT = t, Tu = u and UV = v, so the
letter u as v can be considered as a function to t, whence at the same time
the position of both tangents UM and VS will be defined which is why we
want to call the angles TUM = ζ and UVS = ϑ, and having put the element
Tt = dt it will be

du =
dt

tan ζ
, Uu =

dt
sin ζ

,

then on the other hand

dv =
dt

sin ζ tan ϑ

and finally the element of the curve

Vv =
dt

sin ζ sin ϑ
.

But, for the position of the tangents we will have

TM = u tan ζ, UM =
u

cos ζ
,

the line on the other hand

US = v tan ϑ and VS = v sec ϑ =
v

cos ϑ
.

§14 Since now the total line VS lies in the surface of the body we are looking
for, let us on it take any indefinite point Z, whence having dropped the
perpendicular ZY to the plotting table plane and having drawn the normal
YX from point Y to the axis AT we will have for the surface we are looking
for three coordinates itself we contemplated above, of course AX = x, XY = y
and YZ = z, between which the correct equation is therefore to be investigated,
by means of which the nature of this surface is expressed.
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§15 For this aim, let us call the indefinite interval VZ = s which therefore
is a variable quantity in no way depending on the point V, and hence is to
be carefully distinguished from the variable t, of which not only the two
ordinates TU = u and UV = v are functions, but also the two angles ζ and ϑ

are. Hence, we obtain

ZY = z = v− s cos ϑ

and the interval

UY = s sin ϑ,

whence we further conclude

XY = y = u− s sin ϑ cos ζ

and

XT = s sin ϑ sin ζ,

and so we finally obtain the abscissa

AX = x = t− s sin ϑ sin ζ,

such that by means of the two variables t and s our three coordinates are
succinctly determined this way:

I◦. x = t− s sin ϑ sin ζ,

II◦. y = u− s sin ϑ cos ζ,

III◦. z = v− s cos ϑ.

§16 Therefore, against all expectations it happens here that we even found
algebraic formulas for the three coordinates x, y, z, if for the quantities u
and v algebraic functions of t are taken. For, these functions are completely
subject to our desires, but having assumed them, the two angles ζ and ϑ are
determined in such a way that it is tan ζ = dt

du or

sin ζ =
dt√

dt2 + du2
and cos ζ =

du√
dt2 + du2

,
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then on the other hand

tan ϑ =
dt

dv sin ζ
=

√
dt2 + du2

dv

and hence

sin ϑ =

√
dt2 + du2

√
dt2 + du2 + dv2

and cos ϑ =
dv√

dt2 + du2 + dv2
.

But if therefore vice versa the two angles ζ and ϑ were given in terms of the
variables t, the ordinates u and v themselves will be found expressed by the
following integral formulas

u =
∫ dt

tan ζ
and v =

∫ dt
sin ζ tan ϑ

.

§17 In these formulas therefore completely all solids whose surface can be
unfolded onto the plane are necessarily contained. Therefore, it will especially
be worth the effort to show how the conic bodies are contained in them, since
the cylindrical bodies are already contained in the conics, having removed
the vertex to infinity. Therefore, let the point V be the vertex of the cone since
which is fixed the constants t, u and v will have constant values. Since nothing
impedes that this vertex is taken in the fixed point A itself, we will be able to
put t = 0, u = 0 and v = 0, but then because of

tan ζ =
dt
du

and tan ϑ =
dt

dv sin ζ
=

√
dt2 + du2

dv

these angles ζ and ϑ arise as indefinite, nevertheless in such a way that the one
can be considered as a certain function of the other, since all things extending
to the position of the lines VS are to be referred to one single variable.

§18 Because it therefore is t = 0, u = 0 and v = 0, we will have:

I◦. x = −s sin ϑ sin ζ,

II◦. y = −s sin ϑ cos ζ,

and III◦. z = −s cos ϑ,
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whence it is x
y
= tan ζ and

x
z
= tan ϑ sin ζ,

from which it is concluded

sin ζ =
x√

xx + yy

and hence from this

tan ϑ =

√
xx + yy

z
;

since therefore tan ϑ becomes equal to an arbitrary function of tan ζ, we will
have such an equation:

√
xx + yy

z
= Φ :

(
x
y

)
,

and so the quantity
√

xx+yy
z will become equal to a homogeneous function of

no dimension of x and y and hence further the quantity z itself will become
equal to a homogeneous function of one dimension of x and y, or what
reduces to the same, the equation between x, y and z will be of such a nature
that in it the three variables x, y and z will fill the same number of dimensions
everywhere. Therefore, if one of the coordinates x, y and z goes over to infinity,
the equation for the solid will only contain the remaining two variables which
is a criterion for cylindrical bodies.

§19 We do not spend more time on the expansion of other solids satisfying
our problem here, because below, where we will offer a third method, we
are able to cognize all species of bodies of this kind a lot easier. Meanwhile,
while this second method provided us with such a simple solution, although
by means of the first method hardly any solution could be hoped for, we
will now also be able to expand the first solution further and even resolve
those analytical formulas, on first sight exceedingly difficult, whence many
light will be shed on the analysis. To do this it only will be necessary that we
carefully reduce this second solution to the elements of the first.
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APPLICATION OF THE SECOND METHOD TO THE FIRST SOLUTION

§20 Since in the second solution we already found formulas for the three
coordinates x, y and z in which the nature of the solid is contained, we will
have to elaborate on this that we also investigate formulas for the plain figure
onto which the surface of the solid is unfolded. Here, it especially that curve
bVv with the two curvature is to be studied more accurately, which by the
unfolding of the surface is also reduced to the plane. But because this curve
by means of inflections in infinitely many ways can be reduced to the plane
and can even be extended into a straight line, it is especially to be inquired,
according to which law this reduction to the plane has to happen. From
the things mentioned above it is indeed manifest that this reduction has to
happen in such a way that (Fig. 4) any two infinitesimally close tangents VS
and vs conserve the same mutual position to each other or that the angle Svs
enclosed between them remains the same. Of course, the curve bVv itself is to
be reduced to the plane in such a way that any two infinitesimally close of its
elements conserve the same inclination between each other.

§21 Therefore, the main task reduces to this that we find an infinitely small
angle Svs for which aim it is to be started from the angle MUm. But because
it is

angle TUM = ζ and angle tum = ζ + dζ,

it manifestly follows angle Mum = dζ, further, because we already found
US = v tan ϑ above, it will be from the nature of differentials:

us = v tan ϑ + d(v tan ϑ) = v tan ϑ + dv tan ϑ +
vdϑ

cos2 ϑ
,

where

dv =
dt

sin ζ tan ϑ
;

because therefore it is

Uu =
dt

sin ζ
,

it will be

14



Us = v tan ϑ + dv tan ϑ +
vdϑ

cos2 ϑ
− dt

sin ζ
= v tan ϑ +

vdϑ

cos2 ϑ
.

Therefore, from S drop the perpendicular Sr to Us that one has

rs =
vdϑ

cos2 ϑ
,

then it will indeed be

Sr = vdζ tan ϑ,

whence also the element Ss could be defined, if the would be of any necessity.

§22 Now, from the point r let us drop the perpendicular rρ to the tangent vs,
that having drawn Sρ becomes normal to vs, where it is to be noted that the
triangle Srρ will have an right angle at r, because Sr is normal to the plane
sUV itself. Because

angle rsρ = 90◦ − ϑ,

it will be

rρ = sr · sin rsρ =
vdϑ

cos ϑ
,

whence it is calculated

Sρ =

√
vvζ2 tan2 ϑ +

vvdϑ2

cos2 ϑ
=

v
cos ϑ

√
dζ2 sin2 ζ + dϑ2.

Because therefore it is VS = v
cos ϑ , hence it is concluded

angle SVs =
Sρ

VS
=
√

dζ2 sin2 ϑ + dϑ2.

§23 So we therefore found the angle SVs in which the two infinitely close
elements of the curve are inclined to each other, from which the radius of
curvature of this curve in the point V can be defined very fast, which is of
course

Vv
SVs

=
dt

sin ζ sin ϑ
√

dζ2 sin2 ϑ + dϑ2
,
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which task therefore is not impeded because of the two curvatures; it is enough
to have remembered this in the transition. But because here the main issue
lies in the determination of the elementary angle SVs, let us call the angle
SVs = dω such that it is

dω =
√

dζ2 sin2 ϑ + dϑ2 or dω2 − dϑ2 = dζ2 sin2 ϑ,

where, because the two angles ζ and ϑ are determined by the variable t, of
which also the two ordinates u and v are functions, it is clear that also the
angle ω has to be considered as a function of the same variable t.

§24 Now, according to the prescriptions given above (Fig. 5)

Fig. 5

s S O T P p

Z

b

V

v

let the curve bVv with the two curvatures be described in the plane, such that
the angle SVs intercepted between to infinitely close tangents will be = dω,
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and having related this curve to the axis OP by means of the ordinate PV it
is evident that the angle PVS will be = ω. But let us put these coordinates
OP = p and PV = q, and we will have

dp
dq

= tan ω,

and the element of the curve

Vv =
dp

sin ω
,

but on the other hand by means of the preceding coordinates t, u and v with
the angle ζ and ϑ the same element was

Vv =
dt

sin ζ sin ϑ
,

whence we as a consequence obtain

dt sin ω = dp sin ζ sin ϑ,

which combined with the equation dp
dq = tan ω will give the following integral

values for the present coordinates p and q

p =
∫ dt sin ω

sin ζ sin ϑ
and q =

∫ dt cos ω

sin ζ sin ϑ
;

having found these quantities p and q, which likewise are functions of the
same variable t, take the interval VZ = s, which is the other variable to be
introduced into the calculation, and having dropped the perpendicular ZT
from the point Z to the axis, we find

OT = p− s sin ω and TZ = q− s cos ω.

§25 Since therefore for the point Z reduced to the plane we obtained the
determination, let us put its coordinates OT = T and TZ = U, which are
defined by means of the two variables t and s that it is

T = p− s sin ω =
∫ dt sin ω

sin ζ sin ϑ
− s sin ω,

U = q − s cos ω =
∫ dt cos ω

sin ζ sin ϑ
− s cos ω,
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where it is to be noted that the angle ω depends on the angles ζ and ϑ in such
a way that it is

dω =
√

dζ2 sin2 ϑ + dϑ2.

These coordinates T and U are indeed the same which we in the first solutions
denoted by the letters t and u, whence having done the same change there
the formulas found there for the solid reduce to these

dx = ldT + λdU, dy = mDT + µdU, dz = ndT + νdU

while the conditions, we found there, remain, of course:

ll + mm + nn = 1, λλ + µµ + νν = 1, and lλ + mµ + nν = 0.

But here we found for the same coordinates x, y and z for the solid the
following values:

x = t− s sin ϑ sin ζ, y = u− s sin ϑ cos ζ and z = v− s cos ϑ,

which because of

du =
dt

tan ζ
and dv =

dt
sin ζ tan ϑ

,

differentiated yield:

dx = dt− ds sin ϑ sin ζ − sdζ sin ϑ cos ζ − sdϑ sin ζ cos ϑ,

dy =
dt

tan ζ
− ds sin ϑ cos ζ + sdζ sin ζ sin ϑ− sdϑ cos ζ cos ϑ,

dz =
dt

sin ζ tan ϑ
− ds cos ϑ + sdϑ sin ϑ.

§27 Before we proceed further, it will not be a deviation to have noted the
principal relations of these formulas, and at first by eliminating s we obtain
these relations for the finite formulas themselves:
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x cos ζ − y sin ζ = t cos ζ − u sin ζ,

x sin ζ + y cos ζ = t sin ζ + u cos ζ − s sin ϑ,

x sin ζ cos ϑ + y cos ζ cos ϑ− z sin ϑ = t sin ζ cos ϑ + u cos ζ cos ϑ− v sin ϑ.

Further, for the differentials the following:

I◦. dx cos ζ − dy sin ζ = −sdζ sin ϑ,

II◦. dx sin ζ + dy cos ζ =
dt

sin ζ
− ds sin ϑ− sdϑ cos ϑ

and III◦. dx sin ζ cos ϑ + dy cos ζ cos ϑ− dz sin ϑ = −sdϑ.

§28 But because in this new calculation we reduced everything to the two
variables t and s, while in the first calculation we used the two variables T
and U, let us see, how these are expressed by those, and from the formulas
found for T and U we indeed have

dT =
dt sin ω

sin ζ sin ϑ
− ds sin ω − sdω cos ω

and dU =
dt cos ω

sin ζ sin ϑ
− ds cos ω + sdω sin ω,

if we substitute which values in the formulas dx, dy and dz found before and
carefully distinguish the two variables t and s, we will obtain the following
expression:

dx = dt
l sin ω + λ cos ω

sin ζ sin ϑ
− sdω(l cos ω− λ sin ω) − ds(l sin ω + λ cos ω),

dy = dt
m sin ω + µ cos ω

sin ζ sin ϑ
− sdω(m cos ω− µ sin ω)− ds(m sin ω + µ cos ω),

dz = dt
n sin ω + ν cos ω

sin ζ sin ϑ
− sdω(n cos ω− ν sin ω) − ds(n sin ω + ν cos ω),

which we want to compare to those which arose in the last solution which are
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dx = dt − sdζ sin ϑ cos ζ − sdϑ sin ζ cos ϑ − ds sin ζ sin ϑ,

dy =
dt

tan ζ
+ sdζ sin ζ sin ϑ − sdϑ cos ζ cos ϑ− ds cos ζ sin ϑ,

dz =
dt

sin ζ tan ϑ
+ sdϑ sin ϑ − ds cos ϑ;

and first, the terms affected by ds have to be equal on both sides whence we
obtain these equations:

I◦. l sin ω + λ cos ω = sin ζ sin ϑ,

II◦. m sin ω + µ cos ω = cos ζ sin ϑ,

III◦. n sin ω + ν cos ω = cos ϑ.

§29 If therefore now these values are substituted in the first terms, which
involve the differential dt and those depending on it, namely dζ, dϑ and dω,
we will obtain the following equations:

l cos ω − λ sin ω =
dζ cos ζ sin ϑ + dϑ sin ζ cos ϑ

dω
=

d(sin ζ sin ϑ)

dω
,

m cos ω− µ sin ω =
−dζ sin ζ sin ϑ + dϑ cos ζ cos ϑ

dω
=

d(cos ζ sin ϑ)

dω
,

n cos ω − ν sin ω = −dϑ sin ϑ

dω
=

d cos ϑ

dω
.

Here it is especially noteworthy that from these found formulas the one
variable s went out completely such that now the quantities l, λ, m, µ, n, ν

are determined by the single variable t and do not involve the other s at all,
whereas the quantities T and U implicate both variables t and s.

§30 Now, we found these two equations for defining the functions l and λ:

l cos ω + λ cos ω = sin ζ sin ϑ,

l cos ω− λ sin ω =
d(sin ζ sin ϑ)

dω
.
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Hence, the first multiplied by sin ω+ the second multiplied by cos ω:

l = sin ζ sin ϑ sin ω + cos ω
d(sin ζ sin ϑ)

dω
,

but I. cos ω−II. sin ω gives:

λ = sin ζ sin ϑ cos ω− sin ω
d(sin ζ sin ϑ)

dω
.

In similar way the remaining letters will be found as follows:

m = cos ζ sin ϑ sin+ cos ω
d(cos ζ sin ϑ)

dω
,

µ = cos ζ sin ϑ cos ω− sin ω
d(cos ζ sin ϑ)

dω
,

n = cos ϑ sin ω +
cos ω d cos ϑ

dω
,

ν = cos ϑ cos ω− sin ω d cos ϑ

dω
.

Glow and behold these suitable values for the letters l, λ, m, µ and n, ν which
are of such a nature that those three formulas ldT + λdU, mdT + µdT and
ndT + νdU become integrable and even the integrals themselves can easily be
exhibited which are of course

x = t− s sin ϑ sin ζ, y = u− s sin ϑ cos ζ, z = v− s cos ϑ.

§31 Since our two solutions have to agree completely with each other, there
is no doubt that the remaining conditions mentioned above are also satisfied,
it will certainly be:

ll + mm + nn = 1, λλ + µµ + νν = 1, lλ + mµ + nν = 0.

To show this for the sake of brevity let us put

sin ζ sin ϑ = p, cos ζ sin ϑ = q and cos ϑ = r,

such that it is

pp + qq + rr = 1 and hence pdp + qdq + rdr = 0,
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now, because we have

l = p sin ω +
dp
dω

cos ω,

m = q sin ω +
dq
dω

cos ω,

n = r sin ω +
dq
dω

cos ω,

λ = p cos ω− dp
dω

sin ω,

µ = q cos ω − dq
dω

sin ω,

ν = r cos ω − dr
dω

sin ω,

having done the calculation we will hence find:

1◦ ll + mm + nn = (pp + qq + rr) sin2 ω +
2 sin ω cos ω

dω
(pdp + qdq + rdr)

+
cos2 ω

dω2 (dp2 + dq2 + dr2)

or

ll + mm + nn = sin2 ω +
cos2 ω

dω2 (dp2 + dq2 + dr2),

and so the whole question now is on the investigation of the value dp2 + dq2 +
dr2. But because it is

dp = +dζ cos ζ sin ϑ + dϑ sin ζ cos ϑ,

dq = −dζ sin ζ sin ϑ + dϑ cos ζ cos ϑ

and dr = −dϑ sin ϑ,

we conclude

dp2 + dq2 + dr2 = dζ2 sin2 ϑ + dϑ2 = dω2,

so that it is certain that it is
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dp2 + dq2 + dr2

dω2 = 1,

whence it is manifest that it will be:

ll + mm + nn = sin2 ω + cos2 ω = 1.

§32 In similar manner we will find for the Greek letters:

λλ + µµ + νν = (pp + qq + rr) cos2 ω− 2 sin ω cos ω

dω
(pdp + qdq + rdr)

+
sin2 ω

dω2 (dp2 + dq2 + dr2),

which manifestly yields as before

λλ + µµ + νν = cos2 ω + sin2 ω = 1.

Therefore, it remains that we examine the third property, for which we obtain:

lλ pp sin ω cos ω− pdp
dω

sin2 ω +
pdp
dω

cos2 ω− dp2

dω2 sin ω cos ω,

mµqq sin ω cos ω − qdq
dω

sin2 ω +
qdq
dω

cos2 ω − dq2

dω2 sin ω cos ω,

nν rr sin ω cos ω − rdr
dω

sin2 ω +
rdr
dω

cos2 ω − dr2

dω2 sin ω cos ω,

having collected which into one sum, it will be

lλ + mµ + nν = sin ω cos ω− sin ω cos ω = 0.

And in this way we gave the solution of that analytical Problem mentioned
above (§ 7) which solution in short is as follows.
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ANALYTICAL PROBLEM

§33 Having propounded the two variables T and U to find six functions l, m, n and
λ, µ, ν of them of such a nature that the following six conditions are satisfied:

I◦.
(

dl
dU

)
=

(
dλ

dT

)
, II◦.

(
dm
dU

)
=

(
dµ

dT

)
, III◦.

(
dn
dU

)
=

(
dν

dT

)
,

IV◦ ll + mm + nn = 1, V◦. λλ + µµ + νν = 1,

VI◦. lλ + mµ + nν = 0.

SOLUTION

Having introduced the two new variables s and t into the calculation, imagine
any two functions ζ and ϑ of the latter t, which functions are considered as
angles, of course, from which let the new angle ω be formed such that it is

dω =
√

dζ2 sin2 ϑ + dϑ2,

then from this the two variables T and U are indeed determined in such a
way that it is

T =
∫ dt sin ω

sin ζ sin ϑ
− s sin ω,

U =
∫ dt cos ω

sin ζ sin ϑ
− s cos ω,

having done which the six functions we are looking for will behave as this

l = sin ζ sin ϑ sin ω +
cos ω

dω
d(sin ζ sin ϑ),

λ = sin ζ sin ϑ cos ω− sin ω

dω
d(sin ζ sin ϑ),

m = cos ζ sin ϑ sin ω +
cos ω

dω
d(cos ζ sin ϑ),

µ = cos ζ sin ϑ cos ω− sin ω

dω
d(cos ζ sin ϑ),

n = cos ϑ sin ω +
cos ω

dω
d cos ϑ,

ν = cos ϑ cos ω− sin ω

dω
d cos ϑ.
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But, by means of these three values the following three differential formulas:

I◦. ldT + λdU, II◦. mdT + µdU, III◦. ndT + νdU,

in which the first three conditions are contained, of course, are not only made
integrable, but also the integrals themselves will be expressed in the following
manner:

I◦.
∫
(ldT + λdU) = t− s sin ϑ sin ζ,

II.◦.
∫
(mdT + µdU) =

∫ dt
tan ζ

− s sin ϑ cos ζ,

III.◦.
∫
(ndT + νdU) =

∫ dt
sin ζ tan ϑ

− s cos ϑ,

which solution is therefore to be considered as complete because it contains
two arbitrary functions.

§34 This expansion without any doubt is of greatest importance and especi-
ally deserves it that we with all eagerness inquire its single elements. And at
first, because having introduced the letters p, q and r in such a ways that it is

pp + qq + rr = 1, and dp2 + dq2 + dr2 = dω2,

we found

l sin ω + λ cos ω = p and l cos ω− λ sin ω =
dp
dω

,

if we differentiate, we will have

dl sin ω + dλ cos ω + ldω cos ω− λdω sin ω = dp

and hence

dl sin ω + dλ cos ω = 0,

such that it is

dλ

dl
= − tan ω.

In similar manner we will indeed also find
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dµ

dm
= − tan ω and

dν

dn
= − tan ω.

Therefore, glow and behold this most beautiful property which intercedes
between our six functions l, m, n and λ, µ, ν which can also represented in
this way that it is

dl : dλ = dm : dµ = dn : dν = − cos ω : sin ω.

§35 If we therefore carefully consider those things we will discover certain
traces following which we will be able to find a direct solution of this most
difficult problem. Of course, having constituted these equations:

dx = ldT + λdU, dy = mdT + µdU, dz = ndT + νdU

it is convenient to observe at first that the quantities l, m, n and λ, µ, ν have
to be functions of one single new variable which nevertheless has a certain
relation to the two principal variables T and U. Therefore, let ω be this new
variable, of which our six quantities shall be certain functions. And we already
saw, if the letters p, q and r are such functions of ω that it is

pp + qq + rr = 1 and dp2 + dq2 + dr2 = dω2,

then by putting:

l = p sin ω +
dp
dω

cos ω,

m = q sin ω +
dq
dω

cos ω,

n = r sin ω +
dr
dω

cos ω,

λ = p cos ω− dp
dω

sin ω,

µ = q cos ω − dq
dω

sin ω,

ν = r cos ω − dr
dω

sin ω,

now these three conditions have to be satisfied, of course:
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ll + mm + nn = 1, λλ + µµ + νν = 1 and lλ + mµ + nν = 0,

we furthermore already deduced from this the extraordinary property that it
is

dλ = −dl tan ω, dµ = −dm tan ω and − dn tan ω,

which will be of immense use for us to satisfy the remaining conditions, as it
will become clear soon.

§36 These three conditions certainly demand that those differential formulas
exhibited for dx, dy and dz are made integrable, for which aim one has to
find the relation which must intercede between the two variables T and U
and between ω. To achieve this by means of an integration convert these
differential equations into the following forms:

x = lT + λU −
∫
(Tdl + Udλ),

y = mT + µU −
∫
(Tdm + Udµ),

z = nT + νU −
∫
(Tdn + Udν);

now, these three new integral formulas indeed will take the following forms:

x = lT + λU −
∫

dl (T −U tan ω),

y = mT + µU −
∫

dm(T −U tan ω),

z = nT + νU −
∫

dn (T −U tan ω).

Since l,m, n are functions of the same variable ω, it is manifest that these three
formulas are indeed made integrable, if only the expression T−U tan ω was
any function of the new variable ω; hence, if such a function is indicated by
the letter Ω, we will have

T −U tan ω = Ω,

by means of which equations the equation we are looking for interceding
between the variables T, U and ω is determined.
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§37 Hence, if for Ω ad libitum an arbitrary function of ω is taken, of which
also, as we saw, the letters p, q and r are certain functions by means of which
we already defined the letters l, m, n and λ, µ, ν, the two variables T and
U must be of such a nature that T = Ω + U tan ω, of course we only want
to keep the two variables U and ω in the calculation and therefore let us
introduce this value instead of T, then our three integral formulas can be
represented this way:

x = lΩ + lU tan ω + λU −
∫

Ωdl,

y = mΩ + mU tan ω + µU −
∫

Ωdm,

z = nΩ + nU tan ω + νU −
∫

Ωdn,

which expressions are easily transformed into the following

x = U(l tan ω + λ) +
∫

ldΩ =
Up

cos ω
+
∫

p sin ωdΩ +
∫ dpdΩ

dω
cos ω,

y = U(m tan ω + µ) +
∫

mdΩ =
Uq

cos ω
+
∫

q sin ωdΩ +
∫ dqdΩ

dω
cos ω,

z = U(n tan ω + ν) +
∫

ndΩ =
Ur

cos ω
+
∫

r sin ωdΩ +
∫ drdΩ

dω
cos ω.
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THIRD SOLUTION OF THE PRINCIPAL PROBLEM DERIVED FROM THE
THEORY OF LIGHT AND SHADOW

§38 What is usually treated in Optics on light and shadow, mostly is restric-
ted to the highly special case in with both the glowing and the opaque body
from which the shadow is projected have a spherical shape whence either or
cylindrical or a conic or a convergent or divergent shadow arises, depending
on whether the opaque body was either equal to or smaller or greater than
the glowing body. But whenever the shape of either the shining or the opaque
or of both recedes from that of a sphere, we hardly find anything which could
make us content in the books which were written on this subject; if we wanted
to treat this subject in general, attributing to both bodies, the shining and the
opaque, any shapes, a most difficult question arises and this questions is to be
counted to that part of the analysis of the Infinite on functions of two or more
variables which was begun to be constructed not so long ago.

§39 But what especially from this theory extends to our undertaking is that
the shapes of the shadows are always of such a nature that their surface can
be unfolded onto a plane, whence it is vice versa understood, if we were able
to determine the shape of the shadow for any figure of both the shining and
the opaque body, that then at the same time also our problem will be perfectly
solved.

§40 That the shape of the shadow is indeed always subjected to our problem
can be easily shown this way. Since the shadow is terminated by the extreme
rays of the shining body which at the same time touch upon the opaque body,
first it is plain that in the surface of a certain shadow infinitely many straight
lines are given since the single rays proceed in straight lines; furthermore, all
these rays will touch upon both the shining and the opaque body, whence, if
any plane is imagined, which those two bodies touch at the same time and the
point of contact on the shining body is denoted by the letter M, on the opaque
on the other hand by the letter m, it is perspicuous that the straight line Mm
if elongated exhibits the ray of the light by which the shadow is terminated,
which is also to be understood about the other infinitely close rays which a
emitted from the point M on the same tangent plane which can be considered
also as the tangents of the opaque body, from which the palmary properties
of our problem arises that any two infinitely close lines to be drawn in the
surface at the same time are found in the same plane.
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§41 But this theory of light and shadow extends too far to permit the space
to discuss it here in more detail; therefore, we will only take from it what
suffices to finish our present undertaking. Having put aside the shape of both
the shining and the opaque body, let is consider only the shape of a conic
shadow, for which aim we want to contemplate two parallel sections distant
from a each by a given interval, because it is possible to attribute any arbitrary
shape to which, it is manifest that this consideration contains completely all
shapes of the shadows.

§42 Therefore, let (Fig. 6) these two sections be normal to the table plane
and be footed perpendicular on the line Aa,

U’

U

Z

T’

T

B
Y

A X a

t

t’ b’

u’

u

Fig. 6

and at first let BUU′ be the curve, whose nature shall be expressed by an
equation between the coordinates AT = T and TU = U; in similar way, let
buu′ be another curve somehow different from the first, for which an equation
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between the coordinates at = t, tu = u let be given, but the interval between
these sections shall be put Aa = a; here, it will certainly be possible to consider
the one section BUU′ as shining plain disk, and while the other buu′ refers to
a opaque plain disk, the shadow-cone which we contemplate will arise from
the light rays.

§43 But let the points U and u be taken in such a way that the line Uu if
elongated refers to the ray terminating the shadow, because which has to lie in
the plane touching both the disks, it is necessary that both elements UU′ and
uu′ lie in the same plane with the line Uu, from what it is perspicuous that
these two elements are parallel to each other whence it follows that between
the differentials the same ratio has to hold such that dT : dU = dt : du, which
is why, if it one puts dU = ϕdT, it will also be du = ϕdt.

§44 Therefore, consider this quantity ϕ as the main variable, by which all
the remaining are determined in the following way. For the first curve BU
let T be any function of ϕ, whose nature defines the properties of the curve
BUU′, but then it will be

dU = ϕdT and U =
∫

ϑdT,

it is evident that in this way any any arbitrary curve can be expressed by
means of the variable ϕ. In similar way, for the other curve buu′ the abscissa t
will certainly become equal to a function of ϕ and then one will equally have

du = ϕdt and u =
∫

ϕdt,

whence, because the two curves are completely subject to our desire, it is
possible to assume any functions of ϕ for the letters T and t, having constituted
which at the same time the two ordinates U and u are determined.

§45 Now, let us take an arbitrary point Z on the line Uu, because which point
lies on the surface we investigate, from these let us drop the perpendicular
ZY intersecting the line Tt to the plotting table plane and from Y let us draw
the normal YX to our axis Aa that for the indefinite point Z we obtain three
coordinates which we want to call:

AX = x, XY = y and YZ = z,
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and now it will be easy to find an equation between these three coordinates
by means of which the nature of the surface in question is expressed.

§46 The principles of geometry immediately give us these analogies

T− t : a = T − y : x, or Tx − tx = aT − ay,

U−u : a = T − z : x, or Ux− ux = aU − az,

whence by means of the two variables ϕ and x it will be possible to define the
two coordinates y and z, since we will have:

y = T − x(T − t)
a

and z = U − x(U − u)
a

;

for, if from these two equations the variable ϕ together with the one depending
on it T, t and U, u are eliminated, an equation expressing the nature of our
surface will result.

§47 But we by no means to not want to seek for such an elimination, since the
nature of the surface can be seen much clearer from the two found equations,
which per se are already so simple that it would be an injustice to desire a
more convenient solution, meanwhile it will nevertheless not be without use
to manipulate the forms of these equations a little bit. In a more general way
let us represent the values for y and z as this

y = P + Qx and z = R + Sx,

where the letters P, Q, R, S now denote functions of the other variable ϕ, and
now the question is about of which kind this functions have to be that the two
exhibited equations define an surface unfoldable onto a plane.

§48 Therefore, let us compare these assumed forms to those we found before
and we will have, of course:

P = T and R = U, Q =
t− T

a
, S =

u−U
a

,

because if T and t are arbitrary functions of ϕ, it is evident that the functions
P and Q can be taken ad libitum, and since U and u depend on T and t, the
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functions R and S will also have to depend on the first two P and Q in a
certain way. But because it is

T = P, t = P + aQ, U = R and u = R + aS,

let us substitute these values in the fundamental formulas

dU = ϕdT and du = ϕdt

and we will obtain

dR = ϕdP and dR + adS = ϕdP + aϕdQ

or dS = ϕdQ.

§49 Therefore, we will also be able to eliminate the quantity ϕ from the
calculation, because it is either ϕ = dR

dP or ϕ = dS
dQ , such that instead of it one

of the letters R and S are subject to our desires, if hence P, Q ad R were any
arbitrary functions of the same variable, then S has be such a function of the
same variable that it is:

dS =
dQdR

dP
or

dS
dR

=
dQ
dP

;

this solution can even be made more beautiful in such a way that we say that
for the letters P, Q, R, S one has to assume functions of certain variable of
such a kind that it is dS

dR = dQ
dP or even dS

dQ = dR
dP if which was done these two

equations

y = P + Qx and z = R + Sx

will express the nature of the solid we are looking for.

§50 It does not matter by means of which letter the variable, of which P,
Q, R and S are functions, is indicated, one can even take one of these P, Q,
R, S for it, as functions of which the remaining are then to be understood.
Hence, as long as one of them retains a constant value, the remaining ones
will also be constant, and then from the variability of x all straight lines will
arise which can be drawn on the surface.
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§51 The prescribed condition dS
dQ = dR

dP will manifestly be satisfied by taking
the quantities P and R as constants; hence, a particular solution of our pro-
blems follows. For, let us put that it is P = A and R = B, such that now S
is to be considered as a function of Q. But it is always possible to vary the
coordinates in such a way that A = 0 and B = 0 having done which because
of Q = y

x
z
x = S will be a homogeneous function of no dimension of x and y,

or z will become equal to a homogeneous function of one dimension of x and
y which is the criterion for a conic surface.

§52 The condition is also satisfied by taking Q = 0 and S = 0 such that R
remains an function of P, in which case for z a function of y will arise, because
which involves only two variables,y and z, it will be for a cylindrical solid; the
same happens, if we put either P = 0 and Q = 0 or R = 0 and S = 0; for, in
the first case one has y = 0, in the second on the other hand z = 0, in both
cases it is the equation for a plane.

§53 But to cognize also other species of solids of this kind let us assume for
the simpler ones:

P = aϕα, Q = bϕβ, R = cϕγ, S = dϕδ,

and to satisfy the prescribed condition it is necessary that it is

bβ

aα
ϕβ−α =

dδ

cγ
ϕδ−γ,

whence a double determination arises, the first of the exponents

β− α = δ− γ,

the other for the coefficients:

bβ

aα
=

dδ

cγ
,

both of which are satisfied by taking the values as follows:

a =
f g

κ + λ
, b =

f h
κ + µ

, c =
gk

λ + ν
, d =

hk
µ + ν

,

α = ϑ + λ, β = κ + µ, γ = λ + ν, δ = µ + ν,
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then the equations will be:

y = aϕα + bϕβx, z = cϕγ + dϕδx.

§54 Therefore, in numbers let us consider this case:

y = 2ϕ + 3ϕ2x and z = ϕ2 + 2ϕ3x,

whence after the elimination of the letter ϕ the following equation is found:

−4xy3 − y2 + 18xyz + 27x2z2 + 4z = 0,

which is therefore for a solid whose surface can be unfolded onto the plane.

35


